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Frenet-Serret coordinate system: We assume that there exists a closed 
orbit r0(s). The coordinates around the reference orbit is defined by0( ) y
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How to transform from the original coordinate system onto the 
di i f iFrenet-Serret coordinate system? Generating function!
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The phase space coordinates are 
(x,s,z) with independent coordinate t. 
In one revolution, the time advances 
T0, called the orbital period. In one 
orbital period the particle orbit isorbital period, the particle orbit is 
equal to the circumference C. All 
accelerator components repeat in p p
each orbital period. It would be nice 
to use s as the independent 
coordinate. How to make this 
coordinate transfer?
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These equations indicate that p becomes the new HamiltonianThese equations indicate that –ps becomes the new Hamiltonian 
with the (x,px,z,pz,t,-H) and s as the independent coordinate.
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Transverse magnetic field: ∇×A=B, ∇•B=0. For 2D magnetic field, B can be 
represented by either one component of the vector potential As, or by a scaler p y p p s, y
potential Φ, i.e. Bx=-∂As/∂z, Bz=∂As/∂x, or Bx=∇xΦ, Bz=∇zΦ. Although the field can 
be represented two ways, only the vector potential serves as the “potential” in the 
betatron Hamiltonian For two dimensional magnetic field, one can expand the
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betatron Hamiltonian. For two dimensional magnetic field, one can expand the 
magnetic field using Beth representation:
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How to solve the Hill’s equation?

0)(0)( ′′′′ 0)(   ,0)( =+′′=+′′ zsKzxsKx zx

Let y represent x or z:e y ep ese x o :
 ,0)( =+′′ ysKy

⎞⎛⎞⎛ )()(
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
)('

)(
),(

)('
)(

0

0
0 sy

sy
ssM

sy
sy

The focusing function is piecewise constant!
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1 focusing quadrupole:
Thin lens approximation: Let |K|ℓ→1/f as ℓ→0.
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4 Dipole: K (s)=1/ρ2
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a When the bend angle is small ℓ/ρ<<1 the transfer matrix of thea. When the bend angle is small ℓ/ρ<<1, the transfer matrix of the 
dipole is equal to that of a drift space.

b. When the bending radius  ρ is small, dipoles can provide strong 

δ
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horizontal focusing with Kx=1/ρ2. The vertical focusing is 
adjusted by trimming the edge angle.
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Using the transfer matrices, we can express the solution of the 
Hill’ ti ,0)( =+′′ ysKy
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Particle Trajectories
Particle Trajectories
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Floquet theorem: Many accelerators are designed with the periodic 
condition: K(s+L)=K(s) The solution of Hill’s equation is periodiccondition: K(s+L)=K(s). The solution of Hill s equation is periodic. 
In matrix representation, we obtain

M1M2………….Mn M1M2………….Mn

M(s1+L|s1)=MnMn-1Mn-2…M2M1=M(s1)
M(s2+L|s2)=M1MnMn 1Mn 2…M2=M(s2)=M1M(s1)M1

-1( 2 | 2) 1 n n-1 n-2 2 ( 2) 1 ( 1) 1

M(s4+L|s4)=M3M2M1MnMn-1Mn-2…M4=M(s4)

Each M(s) matrix is a product of identical number of matrices. They 
l d b f i h i l f hare related by similarity transformation. The eigen-values of the 

periodic matrix M(si) are identical. 



The most general representation of the matrix M(s) with unit 
modulus is given by the Courant-Snyder parameterization.
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As particles move through periods of an 
accelerator, the transfer matrix becomes



Example: FODO cell

Lq=1m, Kq=0.5m–2, L1=3.5m
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Lq=1m, Kq=1m–2, L1=3.5m
Thin lens – use with care
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Example: FODO cell
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Questions:
1) Will Φ of these above matrix identical?

⎠ΦΦ⎝ Φ⎠⎝⎠⎝⎠⎝⎠⎝ sincossin001001 αγff

) W
2) Will α and β of these matrices identical? 
3) What is the meaning of these parameters?



X0=10 m, x0’=0, y0=0, y0’=5 mrad

Particle Trajectories
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Mij is the ij-th component of the matrix M(s2,s1)



Fermilab BoosterFermilab Booster
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Stability of accelerator cells: FODO cell example
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Let M be the one-turn map: ⎟⎟
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Let λ1 and λ2 be the eigenvalues of the Matrix M and υ1 and υ2
be corresponding eigenfunctions. Thus we find:

The stability of particle motion is given by | λ1| ≤1 and |λ2 |≤1. 
This is realized by the condition: |Trace(M)| ≤ 2.



Floquet transformation:
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Floquet theorem: If K(s)=K(s+L), we can choose the solution with 
the properties: w(s)=w(s+L), and ψ(s+L)=ψ(s)+Φ, where Φ is the 
h d i i d Th i t i iphase advance in one period. The mapping matrix is 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
)('

)(
),(

)('
)( 0

0 sy
sy

ssM
sy

sy
⎟
⎠

⎜
⎝

⎟
⎠

⎜
⎝ )()( 0sysy

⎟
⎟
⎞

⎜
⎜
⎛ ′−

=
ψψψ sinsincos

)(
21121

2 wwww
ssM w

w

⎞Φ⎛ Φ+Φ
⎟
⎞Φ⎛ Φ′−Φ sinsincossinsincos 2 βαwww

⎟
⎟
⎠′+⎜

⎝ −−−
=

′′′′+ ψψψψ sincos
 

cos)(sin
),(

21
112

2

1

1

2

2

1

21

2211 ww
ssM

w
w

w
w

w
w

ww
wwww

⎟⎟
⎠

⎞
Φ−Φ

Φ
⎜⎜
⎝

⎛
Φ−

Φ+Φ
⇔⎟⎟

⎠

⎞

Φ′+Φ
Φ

⎜⎜
⎝

⎛
Φ−

Φ−Φ
=

sincos
sin

    
sin

sincos
sincos

sin
    

sin
sincos

)(
α

β
γ

α
γ ww

www
sM

11 2
2 α+′

s

∫
1,1    ,

2
1    ,)( 2

β
αγβαβ +

=′−== ws dssssw
s
∫==
0

 1)(    ,)()(
β

ψβ



Since

ThThus
The generating function for (y,y’) to (ψ,J) transformation is

Define:

(y P ) form a normalized phase space coordinates with(y,Py) form a normalized phase space coordinates with 
y2+Py

2=2βJ,  here J is called action.



Courant-Snyder Invariant
1

Emittance of a beam (not a particle)

[ ] εβα
β

βαγ ≡=′++=′+′+ Jyyyyyyy 2)(12 2222

ce o be ( o p c e)

A beam with an rms emittance 10 π mm mrad, what will be the rms betatron 
lit d f b t th l ti ith β 10 ? A 10 !amplitude of  a beam at the location with β=10 m?    Ans: 10 mm!



The rms emittance is invariant in linear transport:



Some design examples:
1 L llid ll d f d i ti1. Large colliders are normally made of arcs and insertion 

regions (IR), where  arcs are made of FODO cells for beam 
transport and IRs are used for physics experiments The IRtransport, and IRs are used for physics experiments. The IR 
matches all optical functions for special properties relevant to 
physics experiments.

2. High  power accelerators are designed  by taking into 
account the effects of space charge  and transition energy 

i i t id ticrossing into consideration.
3. Synchrotron radiation facilities are designed to minimize 

emittance and retain a long straight section for IDsemittance and retain a long straight section for IDs.
4. Low energy proton synchrotrons can use the dipole for 

horizontal focusing, and edge angle for vertical focusing.



CIS: Circumference =17.364 m, Inj KE= 7 MeV, extraction: 240 MeV
Dipole length = 2 m, 90 degree bend, edge angle = 12 deg.

eCIS: No constraint on circumference (C=20m) Use CIS dipoles & cavityeCIS: No constraint on circumference (C=20m). Use CIS dipoles & cavity
Need Damping wigglers, chicane, electrostatic kickers & septum



Ldip=3.0 m, ρ=1.91 m, Edge_angle=8.5°
Circum=28.5 m, Qx=1.68, Qz=0.71, KE_tr=356 MeV

Nader Al Harbi  & S.Y. Lee, RSI, 74, 2540 (2003).
epBB /22 πρπ∑ ==l



Homework#1
Low energy synchrotrons often rely on the bending radius Kx = 1/ρ2 for horizontal 
f i d d l i di l f ti l f i Fi d th l tti t ffocusing and edge angles in dipoles for vertical focusing. Find the lattice property of 
the low energy synchrotron described by the following input data file (MAD). What 
is the effects of changing the edge angle and dipole length? Discuss the stability limit 
of the lattice.

TITLE,"CIS BOOSTER (1/5 Cooler), (90degDIP)"
! CIS =86 82m / 5 =17 364m; protons from 7 MeV to 200 MeV in 1 5 Hz! CIS =86.82m / 5 =17.364m; protons from 7 MeV to 200 MeV in 1-5 Hz.
LCELL:=4.341     ! cell length 17.364m/4
L1        := 2.0                ! dipole length
L2 LCELL L1 ! i h i l hL2        :=LCELL-L1   ! straight section length
RHO    :=1.27324
EANG :=12.*TWOPI/360 ! use rad. for edge angle
ANG   := TWOPI/4
OO : DRIFT,L=L2
BD : SBEND,L=L1, ANGLE=ANG, E1=EANG,E2=EANG, K2=0., , , , ,
SUP: LINE=(BD,OO)     ! a superperiod
USE, SUP, SUPER=4
PRINT, #S/EPRINT, #S/E
TWISS, DELTAP=0.0, TAPE
STOP



Betatron motion 2: Effects of Linear Magnetic field Error
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Effect of dipole field error: 
We consider a single localized dipole error with the kick angle givenWe consider a single localized dipole error with the kick angle given 
by θ=∆Bℓ/Bρ. Because of the dipole field error, the reference orbit is 
perturbed! The idea is to find a new closed orbit that include the p
dipole field error. )()( 0ssysKy y −=+′′ θδ

The closed orbit condition is: ⎟
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Where Φ=2πν, ν is the betatron tune, the 
parameters α0, β0, and γ0 are values of the 
Courant Snyder parameters at the kicker
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Courant-Snyder parameters at the kicker 
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We have solved the closed orbit at one point s0. The closed orbit   of the 
accelerator can be obtained by making mapping matrix:y g pp g
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Note that the closed orbit is described by Green’s function. When 
th b t t t i i t th l d bit di E h

sin2 πν

the betatron tune is an integer, the closed orbit diverges. Each 
time, when the particle arrives the same location will receive a 
coherent kick and the particle becomes unstablecoherent kick and the particle becomes unstable.



For the distributed dipole field error, the closed orbit becomes
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Applications of dipole field error:

1. closed orbit bump:

2 i j ti d t ti ki k2. injection and extraction kicker

3. rf kicker
4. …



Using chicane-dipoles, one can provide local orbit bumps!
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Kicker Strength

Electrostatic kicker:  35
θk = 24 mrad

 = 18 mrad
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For one turn injection and  extraction, the integrated field  strength is 
0 60 MV 25 M V l b Ch i l h f0.60 MV at 25 MeV  electron beam energy. Choosing a length of 
L=0.5 m, the applied voltage on two plate is 60 kV. 



Application: Orbit response matrix (ORM) and accelerator modeling

Closed orbit vs dipole field change:



Effect of quadrupole field error:
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(1) The quadrupole field error changes the betatron tune. 
(2) Th d l fi ld l h th b t t lit d(2) The quadrupole field error also changes the betatron amplitude 

function, which is obtained by the one-turn map:
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Note that the betatron amplitude 
function diverges when the betatronfunction diverges when the betatron 
tune is integer or half-integer!
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Applications of quadrupole error
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Betatron oscillations in the presence of a dipole kick



Turn-by-turn data can also be used for accelerator modeling

C id th b t t tiConsider the betatron motion:
We can organize the turn-by-turn betatron coordinates  in a data 
matrix X If we carry out singular value decomposition we findmatrix, X. If we carry out singular value decomposition, we find



),...,,( 21 UUUU n= Note that The eigenvalues of  betatron modes 
)(2

2
2

1 sUU xβ∝+ increase with the number M of BPMs and the 
number of turns N measured.

What happens if BPM data are noisy? How about the beam energy 
deviates from the designed value?

+N(s,t)+D(s)δ(t)



Homework#2: Carry out detailed analysis of the betatron motion in 
the presence of an rf dipole:the presence of an rf dipole: 

The key to solve this problem is to carry out Floquet transformation:

Once you have done this transformation, the rest of the problem 
become trivial (see next page):



The turn-by-turn data can also be generated by an RF dipole:



Off-momentum closed orbit and dispersion function 
Including dipole field errors and quadrupole misalignment we foundIncluding dipole field errors and quadrupole misalignment, we found 
the closed orbit for a reference particle with momentum p0. By 
using closed-orbit correctors, we can achieve an optimized closed g , p
orbit that essentially passes through the center of all accelerator 
components. This closed orbit is called the “golden orbit,” and a 

i l i h i ll d i l bparticle with momentum p0 is called a synchronous particle. A beam 
is made of particles with momenta distributed around the synchronous 
momentum pmomentum p0. 
• What happens to particles with momenta different from p0? 
• What is the effect of off-momentum on the closed orbit?What is the effect of off momentum on the closed orbit? 

For a particle with momentum p, the momentum deviation is ∆p=p-p0
and the fractional momentum deviation is δ=∆p/p0, which is typically p p0, yp y
small of the order of 10–6 to 10–3. Since δ is small, we study the 
motion of off-momentum particles in perturbation expansion of δ.
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Expanding the betatron equation of motion, we obtain
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For a planar accelerator the horizontal betatron equation of motionFor a planar accelerator, the horizontal betatron equation of motion 
for particles with nonzero δ is inhomogeneous. The solution of the 
inhomogeneous equation is a linear combination of the particular 
solution and the solution of the homogeneous equation, i.e.

δβ Dxx +=  δβ Dxx ′+′=′β
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The solution of the homogeneous equation is the betatron oscillation. 
The solution of the inhomogeneous equation is called the dispersion 
function, or the off-momentum closed orbit.
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Example: FODO cell

Closed orbit condition:

Using the Courant-Snyder parameterization for the transfer matrix, we obtain

Result: (1) The dispersion is proportional to the length of the cell L, the bending ( ) p p p g , g
angle θ, and inversely proportional to the square of the phase advance. (2) The 
dispersion at other locations can be obtained by using the transfer matrix M(s2,s1). 



The AGS (33 GeV proton synchrotron built in 1960) is simply 
d f 60 (5 12) FODO ll Th CPS (28 G V) i i lmade of 60 (5×12) FODO cells. The CPS (28 GeV) is simply 

made of 50 FODO cells.



We recall that we define the normalized betatron phase-space coordinates:

y2+Py
2=y2+(αy+βy’)2=2βJ.

We define the normalized dispersion function coordinates:

The H-function of the dispersion invariant is defined as:



Path length, momentum compaction and phase-slip factors:
We recall the Frenet Serret coordinate system The path length of the referenceWe recall the Frenet-Serret coordinate system. The path length of the reference 
orbit in one complete revolution is
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Here αc is called the momentum compaction factor, which is a measure of the 
compactness of the orbit length for particles with different momenta. The important 

iCCCd ρδρ

of the orbit length is that the particles in synchrotron must synchronize with the rf 
accelerating voltage. Note that the orbiting time for particle is T=C/v. Thus

Here η is called the phase slip-factor.
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Phase stability and the synchrotron equation of motion:

i ( )V=V0sin(ωrft+φ)
ωrf=hf0



V0

Acceleration Lower Energy

Synchronous Energy

Higher Energy

Illustration of the Phase stability: A 
beam bunch consists of particles with

0

Higher Energy
beam bunch consists of particles with 
slightly different momenta. A particle 
with momentum p has its own off-
momentum closed orbit Dδ Since the 0

π/2φ s φ s
momentum closed orbit Dδ. Since the 
energy gain depends sensitively on the 
synchronization of rf field and particle 

i l ti h t h t ti l

0 π/2 π 3π/2 2π

−V0

η<0 η>0

Deceleration

arrival time, what happens to a particle 
with a slightly different momentum when 
the synchronous particle is accelerated? 

0 π/2 π 3π/2 2π
φ

The key answer is the discovery of the phase stability of synchrotron motion by 
M Mill d V k l If th l ti f f i hi h f hi hMcMillan and Veksler. If the revolution frequency f is higher for a higher 
momentum particle, i.e. df/dδ>0, the higher energy particle will arrive at the rf gap 
earlier, i.e. φ<φs. Therefore if the rf wave synchronous phase is chosen such that 
0<φs<π/2, higher energy particles will receive less energy gain from the rf gap. 

Similarly, lower energy particles will arrive at the same rf gap later and gain more 
th th h ti l Thi id th h t bilit fenergy than the synchronous particle. This process provides the phase stability of 

synchrotron motion. In the case of df/dδ<0, phase stability requires π/2<φs<π. 



)sin(sineVEE φφ+Δ=Δ

Synchrotron equation of motion:
2

Δ+= Eπηφφ)sin(sin1 snnn eVEE φφ −+Δ=Δ + 121 ++ Δ+= nnn E
Eβ

φφ

The separatrix orbits for η > 0 
(above transition energy) with 
φs=2π/3, 5π/6, π, (top) and for η < 0 φs ( p) η
(below transition energy) with φs= 
0, π/6, π/3 (bottom). The phase space 
area enclosed by the separatrix isarea enclosed by the separatrix is 
called the bucket area. The 
stationary buckets that have largest 
phase space areas correspond tophase space areas correspond to 
φs=0 (bottom) and π (top) 
respectively.



Summary:

1. Particle motion in an accelerator can be described by 3D simple harmonic 
motion. The transverse degree of freedom is called betatron motion and the 
longitudinal degree of freedom is called the synchrotron motion. g g y

2. The betatron tunes are number of betatron oscillations per revolution, and 
the synchrotron tune is the number of synchrotron oscillations per period. The 
betatron tunes increase with the size of the accelerator while the synchrotronbetatron tunes increase with the size of the accelerator, while the synchrotron 
tune is about 10–4 to 10–2. 

3. The momentum compaction factor plays an important role in the accelerator. 
Typically the momentum compaction factor for FODO cell lattice is α 1/ν 2Typically, the momentum compaction factor for FODO cell lattice is αc~1/νx

2. 
Thus the transition energy is γT~νx. However, the momentum compaction for 
accelerators can be changed by changing the dispersion function in dipoles.
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Examples in design of synchrotrons

Pulse from 
linac

Extracted beam

Lambertson septum

Kicker 1 Kicker2 1 Beam in and out in oneKicker 1 Kicker2 1. Beam in and out in one 
revolution can debunch 
linac bunches if 
Δp/p>0 005Δp/p>0.005.

2. The accelerator can also 
accumulate particles for 

ia storage ring.



Note that a large compaction factor is necessary for achieving 
de-bunching for the electron beams in a single path!



Example: APS lattice is made of 40 Double-bend Achromats (DBA) with a total 
length of 1104m. The momentum compaction factor for all DBA lattice is 
αc=ρθ2/(6R). Because of its simplicity and flexibility, DBA lattice is commonly 
used as basic cells of synchrotron light source design.



Dispersion function plays a very important role in the performanceDispersion function plays a very important role in the performance  
of high energy and synchrotron light source accelerators. For the 
synchrotron light source, the H-function plays a particular 
important role in determining the natural emittance of electron 
beams, i.e. m1083.355    , 1332 −×=== CFC qqx

hθγε
332

,
mcqqx γ

The factor F is lattice dependent factor, F~1 for FODO 
cell F~1/(4√15) for DBA lattice and F~1/(12√15) for thecell, F~1/(4√15) for DBA lattice and F~1/(12√15) for the 
minimum emittance lattice.
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How to measure D(s)? xco(s)=D(s)δ. 

K=45 – 270 keV
I=0-4 A

C=86.8 m



Homework#3:

Exercise 2.2.14:



Solution: With dispersion function and off-momentum δ, the 
horizontal displacement from the center orbit ishorizontal displacement from the center orbit is

Define effective emittance as

Use the result:

We find
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Note that the betatron motion for off momentum particle is perturbedNote that the betatron motion for off momentum particle is perturbed 
by a chromatic term. The betatron tunes must avoid half-integer 
resonances. But, the quadrupole error is proportional to the designed q p p p g
quadrupole field. They are called systematic chromatic aberration. It 
is an important topic in accelerator physics.



1. Tune shift, or tune spread, due to chromatic aberration:
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The chromaticity induced by quadrupole field error is called 
natural chromaticity. For a simple FODO cell, we find
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We define the specific chromaticity as 
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The specific chromaticity is about -1 for FODO cells, and can 
be as high as -4 for high luminosity colliders and high 
brightness electron storage rings.
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2. Chromaticity correction:

Th h ti it t d t b ith tThe chromaticity can cause tune spread to a beam with momentum 
spread ∆ν=Cδ. For a beam with C=-100, δ=0.005,  ∆ν=0.5. The 
beam is not stable for most of the machine operationbeam is not stable for most of the machine operation. 
Furthermore, there exists collective (head-tail) instabilities that 
requires positive chromaticity for stability! To correct 
chromaticity, we need to find magnetic field that provide stronger 
focusing for off-(higher)-momentum particles. We first try sextupole 
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With sextupoles, the chromaticities becomes
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high brightness synchrotron 
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strength can be much higher. 
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effect of the systematic half-
integer stopbands.
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Synchrotorn Motion
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The phase space coordinates are (x,s,z) with 
i d d diindependent coordinate t. In one 
revolution, the time advances T0, called the 
orbital period. In one orbital period, the 
particle orbit is equal to the circumference C. 
All accelerator components repeat in each 
orbital period. It would be nice to use s as the p
independent coordinate. How to make this 
coordinate transfer?



These equations indicate that p becomes the new HamiltonianThese equations indicate that –ps becomes the new Hamiltonian 
with the (x,px,z,pz,t,-H) and s as the independent coordinate.
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For the moment, we neglect all nonlinear effects in the phase slip 
factor The equation of motion is given byfactor. The equation of motion is given by



Fundamentals of rf systems:

Synchrotrons require rf cavities for particle acceleration. The rf 
cavities are devices that can hold strong electromagnetic field. RF 
cavity has characteristic of (1) frequency ω harmoniccavity has characteristic of (1) frequency ωrf, harmonic 
number, (2) Vrf, shunt impedance, Q-factor, and transit time 
factor.
The cavity design is given in another class. Let the cavity gap be 
g, electric field amplitude be E, and speed of the particle be v, the 
energy gain in a cavity with sinusoidal varying electric field is 
reduced by a transit time factor.

We normally include the transit time factor in the voltage amplitude 
f h l f i
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g
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of the accelerator rf cavity. 
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An rf cavity is a device to store electromagnetic energy at a 
particular frequency with minimum energy loss. The cavity can beparticular frequency with minimum energy loss. The cavity can be 
designed with many different shapes and geometry.

Pill-box cavity

Ferrite loaded cavity



proton electron
KE (GeV) 0 3 2 999

GeV/c/u][ 33564.3 p
Z
AB =ρ

KE (GeV) 0.3 2.999
E (GeV) 1.238 3
p (GeV/c) 0.808 3

Z

π
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2=∫ l
p (G / ) 0 808 3
Brho (T-m) 2.695 10.007
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π
ρ
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∑ l

B (T) 1.4 1.3
L(m) 12.097 48.366

∑

N_dip 4 48
L_dip (m) 3.024 1.0076
P 2 24
frf (MHz) 1.3-7.0 499.654
C ( ) 28 5 518 4

h=864
C (m) 28.5 518.4
L1/2 (m) 3.5 DBA
nu x 1 68 26 24nu_x 1.68 26.24
nu_z 0.72 14.3



The synchrotron equation of motion can be derived from the  
Hamiltonian for phase space coordinates (φ ∆E/ω0):Hamiltonian for phase space coordinates (φ,∆E/ω0):
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Note that the second term in the Hamiltonian can be visualized as 
the potential Stable particle motion is bounded by the potentialthe potential. Stable particle motion is bounded by the potential 
well. The area of stable motion is called bucket.



Equivalently, the synchrotron Hamiltonian for the phase space 
di t (φ δ) icoordinates (φ,δ) is
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The fixed point of the Hamiltonian is located at phase space: (φs,0) and (π-φs,0). 
Small amplitude motion around the stable fixed point (φs,0) is nearly simple 
harmonic with synchrotron tune Qs given by
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Requirement of rf voltage in rapid accelerating accelerators

For electron storage ring: V sin(φ )= energy loss per revolutionFor electron storage ring: V sin(φs)= energy loss per revolution



Fermilab Booster

The synchrotron tune in a booster cycle. The squares are measured from turn-by-turn data 
ith ICA method The crosses are meas red from phase signal ith s nchrotron phasewith ICA method. The crosses are measured from phase signal with synchrotron phase 

detector (SPD). Note that the SPD method has difficulty in measuring the synchrotron tune 
above the transition energy at around the 14.5 ms.



The Hamiltonian torus that passes through the unstable fixed point 
is called the separatrixis called the separatrix. 
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The phase space area enclosed 
by the separatrix is called the 
b k t h ti l tibucket, where particle motion 
around the stable fixed point is 
elliptical The motion around theelliptical. The motion around the 
unstable fixed point is 
hyperbolical. The bucket area is 
defined as
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The moving bucket factor is given by
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The bucket area in phase space (φ,∆E/ω0) is given by

EthAEA ΔΔ== B
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Th h th ti idth d d fThe phase space area measures the time-width, and energy-spread of 
the bunch distribution. Thus the dimension of the phase space area 
is eV-sec For example a beam bunch with 100 ns bunch length andis eV sec. For example, a beam bunch with 100 ns bunch length and 
1 MeV energy spread have a bunch area of 0.1 eV-sec. A beam with 
1 MeV energy spread with 1 GeV energy has a fractional energy 
spread of 10–3. 











For a given phase-space area A, the maximum fractional momentum deviation
and phase-width are related to the area by

T i l t i d d f th h lit d iTypical parametric dependence of the phase space amplitudes is

For a beam with rms momentum and phase spreads σδ and σφ, the rms phase 
space area is Arms=πσφσδ=πhσθσδ. Here θ is the orbital angle and φis the rf phase 
angle A beam bunch with Gaussian distribution isangle. A beam bunch with Gaussian distribution is 



Amplitude dependence of synchrotron tune:

Carrying out canonical transformation with the generating function:Carrying out canonical transformation with the generating function:

We obtain
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Small amplitude motion around the unstable fixed point
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Near the unstable fixed point we set φ=π–φs+φ. The equation of 
motion becomes
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The equation of motion around the UFP is hyperbolical. 
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Note that the phase space 
ellipse becomesellipse becomes 
elongated, while the phase 
space area is preserved. The 
UFP can be used for bunch 
compression.



Requirement of rf systems:

1. Acceleration rate: dE0/dt=f0eVsinφs with Vsinφ=2πRρ(dB/dt)
2. If η<0, 0<φs<π/2, if η>0, π/2<φs<π.
3. The bucket area must be larger than the bunch area, frf, V, h.g rf
4. The rf frequency is related to magnetic field by

5 The bucket area and the bucket height are5. The bucket area and the bucket height are



RF beam manipulations: 
(1) adiabatic capture(1) adiabatic capture

(2) Bunch compression



Homework#4



Solution HW#4

Thus 



Double rf system:

With double rf system the beam bunch can have a larger tune spreadWith double rf system, the beam bunch can have a larger tune spread.

Barrier buckets: The sinusoidal 
rf potential can provide phaserf potential can provide phase 
focusing for particle motion. In 
fact, the barrier bucket of any 
potential shape can also provide 
stability of particle motion. The 
barrier bucket can also be usedbarrier bucket can also be used 
for bunch beam manipulation.



The equilibrium distribution in linearized synchrotron phase space is a function of

Homework#5

The equilibrium distribution in linearized synchrotron phase space is a function of 
the invariant ellipse with σθ = |η|σδ/νs. When a mismatched Gaussian beam

is injected into the synchrotron at time t = 0, what is the time evolution of the 
beam?beam? 



Solution HW#5

The linear synchrotron motion can be expressed as

The beam distribution ρ(θ) can be obtained by integrating over the coordinate



Summary
1 Longitudinal rf electric field in accelerator causes charged1. Longitudinal rf electric field in accelerator causes charged 

particles to bunch into groups. The stable phase area of the phase 
and off-momentum coordinates is called the bucket area, and the ,
torus that passes through the UFP is called the separatrix. The 
phase space area of the beam is c

i l i h b k h i h h2. Particles in the bucket execute synchrotron motion, where the 
number of oscillations per revolution is called synchrotron tune. 
Typical synchrotron tune in synchrotrons is about 0 001 to 0 1Typical synchrotron tune in synchrotrons is about 0.001 to 0.1. 

3. Longitudinal rf electric field can be used to manipulate the beam 
profiles by trading the bunch length vs momentum spread.  p y g g p
Similarly the transverse rf electromagnetic field can be used to 
co-relate the longitudinal and transverse coordinates.



Nonlinear beam dynamics in betatron and synchrotron motion
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Note that the Hamiltonian Ĥ is s-dependent, and the Hamiltonian has different 
l t diff t l ti W thi fl tt f H ilt i b kivalue at different locations. We can remove this flutter of Hamiltonian by making 

a Canonical transformation, and by employing the orbital angle θ=s/R as the 
independent coordinate.



The conjugate phase space coordinates are

Thus the new Hamiltonian becomes JJJ
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νx–2 νz=ℓ

The betatron phase space p p
can be visualized as a space 
filled by invariant tori, even 
near a nonlinear resonance.
For a difference resonance  For a difference resonance, 
the invariant is bounded!



• Take 2νx+2νz resonance as an example, we expect to see particle 
loss through tori as shown in the graph below. This means that the 
b t t h i fill d ith li h ti lbetatron phase space is filled with resonance lines, where particles 
that locked onto a resonance will leak out to a large amplitude 
betatron motion through these resonance tori. The invariant tori

b d d f !are unbounded for sum resonances!
• Experiments has yet to be carried out!



Linear  resonances

Resonances up to 4th orderResonances up to 4 order

Up to 8th order resonances



Consider an accelerator with 24 superperiods, and set the bare betatron 
tunes just above the 4th order systematic space charge resonance!

For example: choose the 
bare tunes at (6 23, 6 20), Phase space map at the end of injection

tunes just above the 4 order systematic space charge resonance!

bare tunes at (6.23, 6.20), 
and 1000 injection-turns, 
with a total tune-shift of 
1 1 what will be the final

Phase space map at the end of injection.

1.1, what will be the final 
beam distribution? 

The tune for small 
amplitude particles p p
continue to decrease 
as the particle is 
injected!



What is the effect of the nonlinear systematic space charge 
resonances on beam emittances?resonances on beam emittances? 

The space charge potential has the form of exp(-(x2+z2)/4σ2). We know that the 
Montque resonance is produced by the x2z2 term in the potential. How about the 

4 4 2 2 6 4 2 2 4 6systematic resonance induced by the terms x4, z4, x2z2, x6, x4z2, x2z4, z6, etc? Since 
the space charge potential follows the beam profile, which has the same 
superperiodicity, systematic resonances are located at 4qx=P, 4qz=P, 2qx+2qz=P, 
6qx=P, 6qz=P, etc.

What is the effects of systematic resonances?
1) S Y L PRL97 104801 (2005) NJP 08 2911) S.Y. Lee, PRL97, 104801 (2005); NJP 08, 291
2) X Pang, HB08, 118 (2008)
3) S. Machida, NIMA 384, 316 (1997)
4) Ingo Hofmann, Giuliano Franchetti, and 

Alexei V. Fedotov , HB2002, AIP conference 
proceedingsp g

5) S. Igarashi et al., observed at the KEKPS at 
injection, PAC2003, p.2610 (2003)

6) Oliver Boine-Frankenheim observed the 4th6) Oliver Boine Frankenheim observed the 4
order resonance in bunch rotation at the SIS18 
simulations.



What happens if the betatron tunes are ramped through the 
systematic space charge resonance? Emittance growth ofsystematic space charge resonance? Emittance growth of 
nonscaling FFAG in crossing systematic space charge resonance:





Other emittance dilution mechanisms

1. Since 1950, we believe that the 
half-integer stopband (or the 
envelope resonance by Sacherer) 
is the main cause of emittance 

th i l hi hgrowth in low energy high energy 
accelerators. This mechanism is 
also related to halo formation ofalso related to halo formation of 
high intensity linac due to 2:1 
resonance. Phys. Rev. E 51, 1609 
(1995), ibid 3529 (1995).

2. Space charge Montague 
resonance (2ν 2ν 0 or P)resonance (2νx–2νz=0 or P)

3. Other resonances …



At Fermilab booster, there is 
an IPM for turn-by-turnan IPM for turn by turn 
beam profile measurement 
by averaging 53 bunches.

Data analysis of IPM data: The 
injection-turn numbers at Fermilab
B i d f 2 18Booster were varied from 2 to 18. 
The gate of the ionization profile 
monitor was about 1s, or the 

d fil th fmeasured profile was the average of 
about 52 bunches. The experimental 
condition for all data sets was the 
same as the normal operationalsame as the normal operational 
condition with the corrector 
package, e.g., trim quadrupole, etc. 
The profile data at each revolution is

For the vertical plane, we can 
obtain emittance by

The profile data at each revolution is 
fitted with a Gaussian plus 
polynomial model:

Use basic accelerator physicsUse basic accelerator physics 
information to extract the 
horizontal emittance!



Assuming that the horizontal 
transverse phase-space distribution 20

25
12 turn
4 turn

is uncorrelated to the longitudinal 
phase-space distribution, we obtain
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Upshot: Horizontal emittance does not 
change with beam intensity!



6

7The results are
1. The vertical emittance depends 

4

5
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m
 m

ra
d)

12 turn

p
very much on the beam 
intensity (see right plot)

2. The horizontal emittance is

2

3

4

ε z (
m

m

2. The horizontal emittance is 
independent of the beam 
intensity.

3 Detailed data analysis points to

0 1 2 3 4
1

2

Revolution x1000

3. Detailed data analysis points to 
the importance of the linear 
sum and difference resonances 
t + 13 d 0 Revolution x1000at νx+νz=13 and νx–νz=0. 

4. The Montaque
t 2resonance at 2νx–

2νz=0 holds the 
horizontal emittance 

γT

constant, and causes 
the growth of the 
vertical emittance.



An Introduction to ICA*

Three routes toward source signal separation, each makes some 
i f i lassumptions of source signals.

1. Non-gaussian: source signals are assumed to have non-gaussian distribution. 

Gaussian pdf

2. Non-stationary: source signals have slowly changing power spectra  

3. Time correlated: source signals have distinct power spectra. 
Thi i hThis is the one we are 
going to explore

* Often also referred as Blind Source Separation (BSS). 



ICA with Time-correlation
Assumptions
(1)

S i l ll l d• Source signals are temporally correlated.
• No overlapping between power spectra of source signals.

As a convention, source signals are normalized, so

(2) Noises are temporally white and spatially 
decorrelated. And noises are independent 
f i lfrom source signals.

C i t i
)()()( ttt nAsx +=In accelerator physics:

• Covariance matrix

So the mixing matrix A is the diagonalizer of the sample covariance matrix Cx. For 
better performance, mixing matrix A is found as an approximate JOINTbetter performance, mixing matrix A is found as an approximate JOINT 
diagonalizer of Cx(τ) with several τ, instead of one. To facilitate the joint 
diagonalization algorithm and for noise reduction, a two-phase approach is taken. 



ICA with Time-correlation
• Algorithm

1. Data whitening Set to remove 
i

D1,D2 are 
diagonal1. Data whitening

T],[],[)0( 21
1

21 UU
D

UUC ⎥
⎤
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= )min()max(0 DD ≤<≤ λwith

noisediagonal

Benefits of whitening:
1. Reduction of dimensionIzz >=< T
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)min()max(0 12 DD ≤<≤ cλwith

2. Noise reduction
3. Only rotation (unitary W) 

is needed to diagonalize.
2. Joint approximate diagonalization

T }|{ k

3. The mixing matrix A and source signals s

T
sz WWCC )()( ττ = },,2,1|{ kii L== ττfor
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Linear Optics Functions Measurements

• The spatial pattern can be used to measure beta function (β), phase 
advance (ψ) and dispersion (D )advance (ψ) and dispersion (Dx)

1 Betatron function and phase advance

2211 sAsAx bb +=

22 ⎟
⎞

⎜
⎛ 11 bA

Betatron motion is decomposed to a 
sine-like signal and a cosine-like signal

1. Betatron function and phase advance

)( 2
2

2
1 bb AAa +=β ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −

2

11tan
b

b

A
Aψ

ll sAx =

2. Dispersion
Orbit shift due to synchrotron oscillation 
coupled through dispersion

lx bAD =
b
sl=δ

 b  t t  t  b  d t i d

coupled through dispersion

a, b are constants to be determined



Application to Fermilab Booster
X. Huang et al., PRSTAB 8, 064001 (2005)

Linear lattice function measurements
X. Huang et al., PRSTAB 8, 064001 (2005)

Tempor
al spatial al 
pattern pattern

Beta 
function

Phase 
advance

030function
06.0=

β
σ β

03.0=Δψσ

124

β



Dispersion Measurement
The dispersion is derived from the mode corresponding to evolution of momentum 
deviation due to injection energy mismatch (DC beam, one new dogleg).

Injection energy error and 
its evolution

The measured dispersion 
is compared to model. 
Error σ =0 11 m

125

Error σD=0.11 m



Recent Beta Measurements (AC)

A plus mode
AC beam, with two new doglegs, Pinger frequency 500 Hz (2 ms).

p

A minus mode

126
Coupling is strong in ramping cycles. 



Beta Function in AC data

The measured beta function compared to model.

Turn 620-670

H i t l b t V ti l b tHorizontal beta Vertical beta

Phase advance are also measured. Measurements were done in later time 
of the cycle too

127

of the cycle, too.



Betatron and synchrotron tune measurements

The betatron tunes The synchrotron tunes

The clean coherent betatron modes and the interpolated FFT 
allows betatron tune measurements to high accuracy: <=0.0005

128
with 250 turns.



Weak Synchrotron MotionWeak Synchrotron Motion

st=3001

Temporal pattern amp = 0 1 mmSpatial patternTemporal pattern amp = 0.1 mmSpatial pattern

Amplitude of dp/p, spatial pattern 
li d b l l t d di inormalized by calculated dispersion. 

Correlated to the RF cavities.
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Study of nonlinear motion -- 2νx mode
X P d SY L JAP 106 074902 (2009)

Simple lattice with 12 

X. Pang and SY Lee, JAP 106,074902 (2009)

Simple lattice with 12 
superperiod of FODO 
cells
Add Sextupoles in theAdd Sextupoles in the 
lattice.
Particle tracking was 

i d d h dcarried out and the data 
were analyzed by PCA 
and ICA. 
We found totally 6 
important modes. We only 
consider the 3rd and 4thconsider the 3 and 4
modes at the tune of 2νx



The 2νx mode
Compare the spatial 
function  obtained by ICA y
and PCA 
After ICA processing, the 
normalized spatial wavenormalized spatial wave 
functions of the 3rd and 4th

modes have simple linear 
betatron motion outsidebetatron motion outside 
the sextupole. 
The spatial function of the 
4th d b i d b PCA4th mode obtained by PCA 
preprocessing is 
messy, but still important 
in a proper ICA analysis.



• Equation of motion of 2νx mode 
• Hill’s eqn:• Hill s eqn:
• Short sextupole, localized kick
• Floquet transformation:• Floquet transformation:  

where

• Solution: 

• Get the particular solution 



Perturbative solution:

Closed Orbit



Closed Orbit= x-xβ-x2ν

Simple betatron oscillation !Simple betatron oscillation !

AGS lattice with two sextuples located at 
185m and 420.37m, with strength K2L = 
1 2 d 1 5 2 Bl k li i di t1m-2 and –1.5m-2. Black lines indicate 
the locations of two sextupoles. 



Beam-based measurement 
of sextupole strengths

With 12 sextupoles in the latticeWith 12 sextupoles in the lattice



What happens if there is only one BPM between sextupoles?What happens if there is only one BPM between sextupoles?

BPM1
BPM23x̂

BPM3
SXT

SXT



2
2

3

sin
2

sLxKx
=

Δ
φββ 33 sin ss φββ

With single sextupole in theWith single sextupole in the 
lattice, very point corresponds to 
one turn of tracking, totally 1000 
turnsturns.
The slope indicates strength of    
the sextupole. 
D t i th t lDetermine the sextupole
strength    by finding the slope 
of the center    line of the band.
The band width is proportional    
to noise level.  
This method can also be used 
for    other higher order non-
linear    elements 





The hexagon, which was discovered by the 
Voyager spacecraft in the earlyVoyager spacecraft in the early 
1980s, encircles Saturn with an estimated 
diameter wider than two Earths. The 
associated jet stream likely whips along theassociated jet stream likely whips along the 
hexagon at about 220 miles per hour (100 
meters per second). Cassini has been 

bi i S i 2004 d likorbiting Saturn since 2004, and unlike 
Voyager it has a better angle for viewing 
the north pole and provides higher-

A mysterious hexagon shape on 
S t hi h t d b

resolution images. But the long darkness of 
Saturnian winter hid the hexagon from 
Cassini's visible-light cameras for years. Saturn, which was captured by 

cameras aboard NASA's 
Cassini spacecraft, spans about 

g y
During this time, the craft's infrared 
instruments were able detect the shape 
using heat patterns, with the resulting two Earths and is likely created 

by the path of a jet stream. 

using heat patterns, with the resulting 
images showing the hexagon is nearly 
stationary and extends deep into the 
atmosphere The images also showed aatmosphere. The images also showed a 
hotspot and cyclone in the same region.



TEM wave coupled cavity:

With exp(jωt) dependence, the current and voltage across the cavity structure is

For  a standing wave with  shorted end, i.e. V(s=0)=0, we obtain g , ( ) ,

The input impedance of the wave guide isThe input impedance of the wave guide is

The length of the line is chosen to match the input impedance to the reactance of 
h i i 11the gap capacitance, i.e.

gCR
kZZ

c

11      tan,0
gap

rgapin ===+
ω

l



TEM wave coupled cavity:

The resulting voltage at the gap is

The  shunt impedance and Q-factor:

The surface resistivity and the resistance of the transmission line is
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TEM wave coupled cavity:



Filling time:
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The filling time is defined as the time for the electric field or potential to decrease 
1/e of its initial value.
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