The Design of CSNS/RCS

王生

(北京・密云) August 3rd, 2010

Outline

Introduction

- > The Optics Design for RCS
- The Optics Correction
- Longitudinal Beam Dynamics Design
- > Beam Loss & Control
- Space Charge Effects
- Impedance and Instability
- > The Design of Injection
- > The Design of Extraction
- Future Beam Power Upgrade

Why Was the RCS Chosen?

Rapid Cycling Synchrotron vs. Accumulate Ring

From the point view of budget,

For beam power above 1MW, prefer full energy linac+AR

For several hundreds kW neutron source, prefer low energy linac+high energy RCS

$$\langle P \rangle = E_k \langle I \rangle$$

$$\langle I \rangle = e N_p f_{\rm rep}$$

Space Charge Effects

Let two charged particles move parallel with same velocity, then electric field and magnetic field experienced by particles are

$$E = \frac{q}{4\pi\varepsilon_0 d^2}$$
$$B = \frac{\mu_0 qv}{4\pi d^2}$$

Where q is charge, ε_0 the dielectric constant, μ_0 the permeability, v the velocity.

The ratio of magnetic and electric forces is

$$\frac{F_m}{F_e} = \frac{v^2}{c^2} = \beta^2$$

For non-relativistic beam, $Fm \ll Fe$. Due to the signs of Fm and Fe are inverse, the space charge effects are decreased with the increase of the velocity.

Space-charge Tune Shift

Space charge is a fundamental limit to beam power in high intensity AR and synchrotron. The incoherent space-charge tune shift is

$$\Delta v_{x,y} = -\frac{f_{sc} N r_0 R}{2\pi B_f v_{0x,y} \beta^2 \gamma} \left[\frac{1}{\sigma_{x,y} (\sigma_x + \sigma_y)} (\frac{1}{\gamma^2} - \eta_e) + A_{im}^e (\frac{1}{\gamma^2} - \eta_e) + A_{im}^m \right]$$

The contribution from the electric and magnetic images of the beam are represented by the Laslett tune shifts A_{im}^{e} and A_{im}^{m} , respectively. For a round beam with no neutralization, the direct space-charge tune shift becomes

$$\Delta v_{x,y} \approx \frac{f_{sc} N r_0}{4\pi B_f \varepsilon_{rms} \beta^2 \gamma^3}$$

Where N is the proton number, r_0 is the classical radius of a proton, The bunch form factor *f*sc is equal to 1/2 for a uniform distribution, and to 1 for a Gaussian distribution. The B_f is bunching factor. ε rms= $\sigma \perp^2 / \beta \perp^2$, $\beta \perp = \mathbf{R}_0 / v_0$

Introduction

CSNS Schematic Layout

Primary Parameters of CSNS

Phase	Ι	II	
Beam power on target [kW]	100	500	
Beam energy on target [GeV]	1.6	1.6	
Ave. beam current [µA]	62.5	315	
Pulse repetition rate [Hz]	25	25	
Protons per pulse [10 ¹³]	1.56	7.8	
Ion Source type	Penning	RF Volume	
Linac energy [MeV]	81	250	
Linac RF freq. [MHz]	324	324	
Max. space charge tune shift	0.28	0.24	
Target number	1	1	
Number of spectrometers	3	18	

Pulsed Spallation Neutron Sources

Machine	Energy [GeV]	Intensity [ppp]	Tune- shift	Rep-rate [Hz]	Power [MW]	Туре
LANSCE	0.8	2.3x10 ¹³		20	0.07	AR
ISIS	0.07-0.8	2.5x10 ¹³	~0.4	50	0.2	RCS
J-PARC	0.4 - 3.0	0.8x10 ¹⁴	0.15	25	1.0	RCS
SNS	1.0	1.6x10 ¹⁴	0.1	60	1.0	AR
CSNS	0.08-1.6	1.56x10 ¹³	0.28	25	0.1~0.5	RCS
ESS	1.334	2.3x10 ¹⁴		50	2.5x2	AR

The Evolution of Beam in RCS

	Beam	Kinetic Energy (GeV)	Emittance/ Acceptance (πmmrad)	Peak Current	Bunch Length	Beam Power (kW)
LRBT	H-	0.08	4/25	15mA	~ 500µs	5
Injection	Н-→р	0.08	300/540			5
RCS	р	0.08 →1.6	300 →80/540			5 →100
Extraction	p	1.6	~ 80/350	~ 3.5A	80ns+80ns	100
RTBT	р	1.6	~ 80/350	~ 3.5A	80ns+80ns	100

Average current 62.5 µ A

Beam at the exit of Linac

Beam at the target

The Optics Design for RCS

The resonant operating mode of RCS

RCS design

- RCS may be divided into various systems according to their beam-handling functions
 - Injection
 - Capture and acceleration
 - Extraction
 - Collimation, and transport
 - Beam instruments and correctors
- These systems are integrated by the "lattice" magnets, usually symmetrically arranged to alleviate the lowerorder resonances

Lattice Design -Basic Requirement

- > The structure with proper super-periodicity
- Enough dispersion free straight section for accommodate injection, extraction, RF, beam collimation, and beam instrumentation
- Space with dispersion for momentum collimation
- > Avoiding transition energy jump
- Tuning Flexibility
- **Easy for optics correction**
- > Proper circumference
- > Proper aperture of magnets
- > Enough acceptance (both for transverse and momentum)

J-PARC/RCS lattice (3-fold, FODO)

SNS Accumulator Lattice (4-fold, FODO+doublet)

ESS Accumulator Lattice (3-fold, triplet)

北京•密云

Lattice design procedure

- > The choice of the number of super-periodicity
- > The choice of focusing cell
- > The choice of length and bending angle of dipole
- > The circumference
- **>** The dispersion depression
- The generation of long dispersion free straight section

CSNS/RCS Lattice Design—4-fold Structure

- Separated-function design
- The collimation be performed in a separate straight section.
- The superperiodicity of 4 is better for reducing the impact of low-order structure resonance than the superperiodicity of 3.

A Lattice with FODO Arc and Doublet straight

- Four-fold symmetry
 - Separated functions
- FODO arc (3.5 cell at each arc)
 - Easy correction
- Dispersion-free doublet straight
 - long, uninterrupted straight for collimation & injection
- Missing-gap momentum collimation

Good for momentum collimation

Larger B gap and Q aperture decided by intrinsic characteristic of FODO structure

A Lattice with FODO Arc and Doublet straight

Lattice consists of FODO arc (with missing gap) and doublet dispersion free straight section **Arcs: 3.5 FODO cells, 315 degrees** phase advance •Straights: doublet, 6.5×2+9.3 m long drifts at each straight Gap of Dipole : 175mm Max. Aper. Of Quadrupoles: 308mm *IDerDerDY

A Lattice with Triplet Cells

- Four-fold symmetry
 - Separated functions
- Triplet structure
 - Small magnet aperture
- Dispersion-free long uninterrupted straight
 - For collimation & injection/extraction
- > Straight at arc with large dispersion
 - High efficiency momentum collimation
- The all-triplet structure is not good for chromaticity correction and dynamic aperture

A Lattice with Triplet Cells

Lattice consists of 16 triplet cells, with a gap in the middle of arc and dispersion free straight section .

The primary parameters of two lattice schemes

Scheme	Triplet	FODO+Doublet
Circumference (m)	227.92	235
Superperiod	4	4
Number of dipoles	24	24
Number of quadrupoles	48	48
Lattice structure	Triplet	FODO+Doublet
Total Length of long drift (m)	3.85*8+11*4	6.5*8+9.3*4
Nominal Betatron tunes (h/v)	4.82/4.80	5.82/5.80
Chromaticity (h/v)	-4.3/-9.2	-6.6/-7.3
RF Freq. (MHz)	1.02~2.44	0.99~2.39
RF Voltage (kV)	165	165
Trans. acceptance (μπm.rad)	540	540
Momentum acceptance	1%	1%
Effective length of dipoles(m)	2.1	2.1
Dipole gap (mm)	160	175
Max. quadrupole aperture (mm)	265	308
Effective length of quadrupole(mm)	410, 450, 600, 900	500, 700
Number of dipole power supplies	1	1
Number of quadrupole power supplies	5	7

Emittance and Acceptance

Acceptance refers to the phase-space area within which particles oscillate stably. A large acceptance is essential to achieving a low-loss operation.

- betatron oscillations;
- the off-momentum closed orbit due to dispersion;
- closed-orbit deviation due to dipole field errors,
- β beating
-

Aperture of magnet

Full aperture of magnet aperture:

 $\Phi_{x} = 2 \times (\sqrt{\varepsilon_{x}\beta_{x}} + D_{x}\delta) + 26mm$ $\Phi_{y} = 2 \times \sqrt{\varepsilon_{y}\beta_{y}} + 26mm$

A momentum acceptance $\pm 1\%$

RCS Components Layout

Tune Diagram for 4-fold Structure

red: 1st order structure resonance golden: 2nd order structure resonance blue: 3rd order structure resonance green: 4th order structure resonance gray: 3rd deference structure resonance pink: coupling resonance

$$mQ_x + nQ_y = 4l$$

 $m,n=0,\pm 1,\pm 2,\pm 3,...$

北京•密云

The Optics Correction

Chromaticity Correction

- > Powered with DC power supply
- > 2 families power supplies
- > Designed for low beam density
 - for commissioning

The twiss parameters for off-momentum particles with different chromaticity

Dynamic Aperture

4.5 σ x×2.5 σ y, Δp/p=±1% with sextupoles
2.5 σ x×2 σ y, Δp/p=±1% with sextupoles and high order field of dipoles and quadrupoles
σ x and σ y are h and v beam size (320 π mm.mrad)

Closed orbit distortion and correction

Closed Orbit Distortion and Correction

- > 32 BPM for COD correction, two in each triplet cell
- > 34 dipole correctors , 17 for horizontal and 17 for vertical plane
- > The power supply for dipole corrector is programmable
- The dipole corrector should be ramped from 10 to 20 steps during one RCS cycle
- The maximum correction ability of dipole corrector is 1mrad at 1.6GeV

The Alignment Goal for RCS

Components	Δx	Δy	Δz	$\Delta \theta_x$	Δθ _y	$\Delta \theta_z$
	(mm)	(mm)	(mm)	(mrad)	(mrad)	(mrad)
Dipoles	0.2	0.2	0.2	0.2	0.2	0.1
Quadrupoles	0.15	0.15	0.5	0.5	0.5	0.2
Sextupoles	0.15	0.15	0.5	0.5	0.5	0.5
Correctors	0.3	0.3	1.0	1.0	1.0	0.5
BPMs	0.15	0.15	0.5			

Closed orbit distortion

COD correction

北京•密云

Closed orbit distortion with alignment and field errors

Statistics for 20 groups of random errors

COD Correction

Statistics for 20 groups of random errors

Local COD Correction

- Distortion to closed orbit due to the stray field of Lambertson and correction
- The stray field of DC Lambertson make distortion to the circulating beam, especially to the beam in low energy stage;
- OPERA-3D simulation shows the vertical stray field yields 0.7mrad impact to the beam of 80MeV;
- A local 3-bump is design to locally correct this distortion.

北京•密云

Tunes and Twiss parameter correction

- The saturation in high energy stage in an RCS cycle will lead to the mismatch between dipoles and quadrupoles, and make the deviation of twiss parameters and tunes. When the deviation is large, the correction is necessary.
- > 24 trim quadrupoles are adopted in the optics design.
- > Trim quadrupols are powered with programmable power supply.
- They also can be used to correct or compensate some of the space charge effect.
- The trim quadrupole also benefits to the response matrix beam measurement.

Twiss parameter distortion due to saturation errors

Blue represents nominal beta function, pink represents beta function with saturation errors (1%) and yellow represents beta function after correction

Tune shift due to saturation errors and correction

北京•密云

Compensation of space charge effects

Yellow: effected by space charge, pink: correction by trim Q The tune by be changed by trim Q in different energy stage

Longitudinal Beam Dynamics Design

Longitudinal beam dynamics design

- The RF cavities with harmonic number of 2 are adopted;
- Dual harmonic cavities will be added in the future upgrade for higher beam power;
- 7 RF cavities provide total RF voltage of 165 kV, with one additional cavity for redundancy.
- The design of RF voltage and phase curves is an important issue to decrease the beam loss due to the space charge and phase changes

An RF cycle

Voltage and Phase Curve

Chopping

Chopper is located in the LEBT and/or MEBT of CSNS linac, for cleaning the particles out of the RF stable region. The voltage and phase curve need to be optimized according to different chopping rate.

Without chopping

With chopping

北京•密云

The Longitudinal Phase Space

Beginning of acceleration

End of acceleration

OCPA 2010

The Longitudinal Phase Space Evolution during a Cycle

Dual Harmonic Acceleration

For getting more wide and flat potential well, to increase the bunch factor, so to decrease the transverse space charge effect

 $V = V1 \sin \varphi + V2 \sin (2\varphi - \theta)$

Red line: the curve with dual harmonic acceleration; **Blue line:** curve for h=2, and green line for h=4

Beam Loss & Control

Beam loss limit

	损失束流能量	平均流强	最大束流损失功率	备注
	[MeV]	[µA]	[W/m, W]	
LEBT	0.05	400	4.0W	损失 20%
RFQ	1.5	220	150 W	Pre-chopping 束流损失
MEBT-chopper	3.0	156	190 W	30%束流损失在快 chopper 系统
DTL1	22	156	1 W/m	按手工维护要求
DTL2	42	156	1 W/m	按手工维护要求
DTL3	62	156	1 W/m	按手工维护要求
DTL4	81	156	1 W/m	按手工维护要求
DTL5	99	156	1 W/m	按手工维护要求
DTL6	116	156	1 W/m	按手工维护要求
DTL7	132	156	1 W/m	按手工维护要求
LRBT	130	156	1 W/m	按手工维护要求
LRBT collimator	130	155	20 W	动量尾巴切除,有局部屏蔽
Injection region	130	151	20 W	H-收集和切割磁铁损失
RCS	300	151	1.0 W/m	按手工维护要求
RCS collimatior x-y	300	151	4000 W	按横向 collimator 设计能力(90%准直效率)
RCS collimator z-	300	151	1000 W	按纵向 collimator 设计能力
Extraction region	1600	151	20 W	切割磁铁损失
RTBT	1600	151	1 W/m	按手工维护要求
RTBT collimator	1600	151	1000W*2	两段,都按最大值计算

Low-loss design philosophy

- ≻A low-loss design
- **Flexibility**
- Localize beam loss to shielded area
- **Engineering reliability:** heat & radiation resistant
- Accidental prevention: Immune to front end, linac & kicker fault

Two-stage Collimation System

The beam and collimation in normalized phase space. The particles scatted by the primary collimator are absorbed by secondary collimators, which with certain phase advance from primary collimator.

北京•密云

Beam collimation

- The transverse collimation system adopts the two-stage collimation system. It consists of one primary collimator and four secondary collimators. It transverse collimation system takes a separate straight section, just downstream of the momentum collimators.
- One momentum collimator located in the gap of the arc, just after the injection straight, and the type of the momentum collimator is direct absorber made of graphite and copper.
- It is expected to have a collimation efficiency of over 95% for the whole collimation system.

The layout of the transverse collimation system

Collimator

Sketch map of momentum collimation

Momentum two-stage collimation

The emittance and acceptance in the RCS

		11 –	RCS accep.
beam emit.	prim. coll. accep.	sec. coll. accep	540pi.mm.mrad
320pi.mm.mrad	350-420 pi.mm.mrad	420pi.mm.mrad	
Momentum	collRC	CS accep.	
350 pi.mm.m +1% dp/	urad 540g /p +3	oi.mm.mrad l%dp/p	

Beam loss without collimation

In case of no beam collimation, the total beam loss is small, but the maximum local beam loss is over 5W/m.

Beam loss with collimation

Beam loss distribution in the RCS with transverse and momentum beam collimation, total beam loss is about 5%, and the collimation efficiency is more than 96%

Space Charge Effects

Space charge effects

- Space charge effects set a fundamental limit to high intensity synchrotrons
- > Due to beam length is much greater than its transverse beam size, the space charge effects in two directions can be considered separately
- > In transverse direction, the dominant effects are the coupling of the transverse motions and the space charge induced resonant
- In the longitudinal direction, space charge contributes a defocusing force below the transition energy

Cure:

- ✓ Flexible lattice design
- ✓ Painting
- ✓ Dual harmonic acceleration
- ✓

Space charge effects simulation

- The space charge effects limit the maximum beam density, as well as beam power.
- Many simulation works were done for the study of space charge effects by using code ORBIT and SIMPSONS.
- Various conditions, which may influence the space charge effects and beam loss, are considered, including the effects of different lattice structure, different tune, the combine effect of sextupole field and space charge, different painting beam distribution, etc. Some injection painting optimizations were made for decreasing halo formation and tune spread.
- The beam loss and emittance growth are compared for different conditions. The simulation results are the foundation of physics design and the choice of design parameters.

Emittance growth due to space charge effects

The emittance growth due to the space charge effects, red point represents the particles without space charge effects, and the black points represents the particles with space charge effects. The distribution is obtained at just finishing the correlated painting.

Injection optimization

The beam distribution in y direction for correlated painting. With the space charge effect, the beam distribution is distorted from the painting result with no space charge effects (left). With the optimization of painting bump orbit, the beam distribution with space charge effects are optimized (right)

Space charge simulation

Emittance growth

Emittance growth depends on tune

With and without momentum offset

Emittance growth depends on lattice

Impedance and Instabilities

Impedance and instabilities

The impedance of RCS comes from

- the wall of chamber
- bellows, kickers

ACADEMY OF SCIENCES

- **RF cavities, BPM**
- collimators, steps
- space charge
- The impedance of these components has been calculated both for injection energy and extraction energy
 - the space charge impedance dominates in the broad band impedance
 - wall impedance mainly comes from the stainless steel chamber

Some special impedance components

Beam instabilities assessment

- > The primary calculation shows that there is no microwave instability occurred.
- The threshold of the impedance budget is larger than the threshold of transverse mode coupling instability, and there exists possible instability. But due to the damping effect of space charge, for synchrotron operates under transition energy, the theoretical calculation is always conservative. The details numerical simulation is needed for further study.
- The rise time of transverse wall impedance instability is less than a RCS cycle period, and this should be further studied.
- On e-p instability, the simulation shows that due to the long bunch space, electron cloud will not accumulate, and e-p instability is not a trouble.

The Design of Injection

Multiturn charge-exchange injection

- Preferred for modern high-intensity rings
- It allows a large number of revolutions to be injected and controlled to realize a desired beam distribution. The constraints imposed by Liouville's theorem on conventional multiturn injection do not apply since the Hions are stripped within the acceptance of the ring. With a programmed orbit bump, several hundreds of turns can be injected into the ring with tolerable foil scattering.

J-PARC/RCS injection scheme

distance along central trajectory, m

SNS/AR injection scheme

Beam injection

- H- stripping and painting method are used to match the small emittance beam from linac to large emittance beam in RCS.
- > The injection is performed in a 11 m long straight section,
- Four horizontal painting magnets (BH), four vertical painting magnets (BV), and four fixed orbit bump magnets (BC).
- **BC** magnets works in DC mode.

6.0

250

200

5:0

3:0

4.0

To beam dump

Injection component layout. BC1~BC4: Fixed orbit bump magnets, BH1~BH4: horizontal painting bumpers, BV1~BV4: vertical painting bumpers, ISEP1&2: septum

Schematic of shift bump and painting bump

Injection painting scheme

Finally, anti-correlated scheme was adopted

The painting procedure

-100 <u>L...</u> -50

50 × (mm)

Ð

100

0 phase (rod)

2

- 4

-2

-4

The Design of Extraction

Extraction

- Two 1.6GeV proton bunches are extracted by one-turn extraction from RCS in each RCS cycle.
- The beam is vertically kicked by a series of kicker to a horizontal bending Lambertson type septum.
- The bunch length is about 60~80ns, and the space between two bunch is about 330~350ns. The rise time of kicker is required to be less than 250ns and flat top field need to be kept more than 550ns.
- The auxiliary bump magnets are adopted to provide additional extraction orbit and ease the kicker requirement.

The time structure of extraction beam

Extraction from RCS

Main parameters of extraction components

Components	Parameter	
General	Acceptance (πmm.mrad)	350
Kicker	Number	7
	Total strength (mrad)	19.05
	Rise time (ns)	≤250
	Pulse width (ns)	~600
	Magnetic field (G)	530~620
Lamberson	Number	1
	Effective length(m)	2.2
	Angle (°)	13
	Field strength (T)	0.9362

散裂中子源 China Spallation Neutron Source

Stray field of Lambertson

Effects of Malfunction of 1 kicker of 7

The acceptance is decreased to 100 π mm.mrad due to 40mm COD

Effects of flat top field error of kickers

The statistics of 20 groups of random errors

Future beam power upgrade

- > Necessary space for linac upgrade to 250MeV
- Necessary space left in RCS for Dual harmonic acceleration
- Beam loss and collimation
- Beam injection
- > Beam dump

Homework

- 1. 强流质子加速器中,控制束流损失的两个基本的设计原则是什么? 在 CSNS RCS设计上对束流损失的控制是如何考虑的?
- 2. 提高一台加速器的输出束流功率的途径有那些, CSNS未来功率升级 的主要途径是什么? 通过什么手段减弱空间电荷效应?
- 3. 试分析动量分散 δ >0和 δ <0的粒子,经过刮束器后的发射度的变化情况(参考p57)。

Thank you! Have a good time at school!